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Abstract: The frequency-following response (FFR) is a scalp-recorded signal that reflects phase-locked activity from neurons
across the auditory system. In addition to capturing information about sounds, the FFR conveys biometric information,
reflecting individual differences in auditory processing. To investigate the development of FFR biometric patterns, we trained
a pattern recognition model to recognize infants (N¼ 16) from FFRs collected at 7 and 11months. Model recognition scores
were used to index the robustness of FFR biometric patterns at each time. Results showed better recognition scores at
11months, demonstrating the emergence of robust FFR idiosyncratic patterns during this first year of life. VC 2022 Author(s). All
article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/
licenses/by/4.0/).
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1. Introduction

During the first year of life, infants undergo a series of neurodevelopmental changes in auditory sensory processing that
result from auditory experience and the maturation of the auditory system (Eggermont and Moore, 2012; Werner and
Marean, 2019). Because infants lack the cognitive maturity that is required to perform in most behavioral tasks, recent
electroencephalography (EEG) work has leveraged the frequency-following response (FFR) to investigate these neurodeve-
lopmental changes (Anderson et al., 2015; Jeng et al., 2010; Lemos et al., 2021; Skoe et al., 2015). The FFR is a far-field
auditory-evoked potential that does not require attention to be observed (Coffey et al., 2019; Krizman and Kraus, 2019;
Skoe and Kraus, 2010). The FFR reflects sustained phase-locked activity from multiple nuclei in the auditory pathway and
primary auditory cortex. When the central auditory system is stimulated with a periodic waveform, these nuclei synchro-
nize their oscillatory activity by firing in phase at each cycle of the waveform. This synchronized activity, which is aggre-
gated by the FFR, provides a sensory representation of the temporal structure of the stimulus signal with a high degree of
fidelity [Fig. 1(a)]. Using the FFR, prior infant work has documented the early maturation of neural mechanisms that are
critical for the neural representation of sound, such as neural phase-locking (Van Dyke et al., 2017).

The representation of sound features like the fundamental frequency (F0) in the FFR is influenced by experience
(Krishnan et al., 2010; Reetzke et al., 2018; Wong et al., 2007). For example, the FFRs of native speakers of languages that
are tonal (e.g., Mandarin Chinese) and musicians exhibit more robust tracking of stimulus F0 than the FFRs of native
speakers of languages that are not tonal and non-musicians (Bidelman et al., 2011). These findings indicate that the FFR
captures plasticity driven by long-term auditory experiences, including bilingualism (Bsharat-Maalouf and Karawani,
2022). In this body of literature, the neural coding of F0 is evaluated by comparing the F0 contours of the FFR and evok-
ing stimulus in the temporal or spectral domain [e.g., Fig. 1(a)].

The FFR also conveys biometric patterns [Fig. 1(c)] that account for individual differences in neural processing
(Coffey et al., 2016; Kraus et al., 2016; Reis et al., 2021) and can be used to identify and discriminate between listeners
(Llanos et al., 2019; Xie et al., 2017). In a previous study (Llanos et al., 2019), we used a pattern recognition model to recog-
nize adult listeners by their FFRs. Crucially, the performance of the model remained robust even when the FFR was averaged
across a small number of trials or stimulus repetitions. The small averaging size required to recognize listeners was a major
finding because the number of trials that is required to evaluate F0 encoding in most FFR studies exceeds 1000. Thus, our
approach provided a potential method to investigate the development of biometric patterns in the FFRs of infants, who
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usually struggle to engage in long experimental sessions. In the present study, we extended the methodologies developed in
Llanos et al. (2019) to investigate the development of FFR idiosyncratic patterns (spectro-temporal FFR patterns that can be
used to identify and discriminate between listeners).

We tested the hypothesis that the early maturation of the auditory system combined with enriched auditory
experience would result in more robust biometric profiles, operationally defined as individual FFR morphologies that are
easier to recognize. To evaluate this hypothesis, we trained a hidden Markov model (HMM; Llanos et al., 2017, 2019) to
recognize infants by their FFRs and used the recognition scores (the log-probability of being recognized by the model) to
index the amount of biometric information encoded in the FFR of each infant. FFRs were longitudinally collected at 7 and
11months of age because during this period infants’ auditory perception is strongly influenced by auditory experience
(Bosseler et al., 2013; Maurer and Werker, 2014; Werker and Tees, 1984). To evaluate the effects of this period on FFR
biometrics, we compared infant recognition scores between sessions.

As we note above, one experimental limitation of the FFR is the large number of trials that is usually required
for averaging purposes (Skoe and Kraus, 2010). Because infants cannot always participate in long EEG sessions and their
EEGs are often contaminated with movement artifacts that are hard to suppress, this experimental limitation has contrib-
uted to the lack of infant data in this area. To that end, we investigated the effects of averaging size on the performance of
the model. We also manipulated the range of FFR frequencies used to recognize infants to assess the brain oscillation
bands that encoded more robust biometric patterns. To optimize the performance of the model, individual bands were
averaged across the number of trials providing higher recognition scores.

Finally, we leveraged two well-established metrics of neural F0 encoding to assess the sensory representation of
stimulus pitch at each session: neural F0-strength and stimulus-response correlation (Krishnan et al., 2010; Reetzke et al.,
2018). Neural F0-strength measures how much stimulus periodicity is preserved in the FFR. Stimulus-response correlation
evaluates the representation of F0 kinematics in the FFR. We focused on these metrics because they have been shown to
capture plasticity driven by auditory experience (Krishnan et al., 2010; Reetzke et al., 2018). We compared the results of
these metrics, which require larger FFR averaging sizes (>1000 trials) than the HMM (Llanos et al., 2017, 2019), to deter-
mine which of these approaches was able to capture more robust developmental changes in the FFR.

2. Methods

2.1 Participants and EEG acquisition

All experimental procedures were approved by the University of Washington Institutional Review Board. Infants were
recruited from monolingual English households [family standard effect size (SES): mean (M)¼ 53.64, standard deviation

Fig. 1. The FFR. (a) Similarity between the waveforms, spectrograms, and F0 contours of the evoking stimulus used in the present study and
its FFR. (b) The FFR is usually collected with three scalp-electrodes while participants are listening to thousands of stimulus repetitions. (c)
The FFR contains spectro-temporal patterns that vary across listeners. This property is illustrated with the FFRs of two listeners. FFRs were
bandpass filtered between 180 and 280Hz, right above the F0 range of the evoking stimulus. Waveform amplitudes were normalized for visu-
alization purposes.
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(SD)¼ 8.90 Hollingshead scale]. The inclusion criteria included the following: (a) born within 14 days of the due date; (b)
no more than three ear infections and no known health problems; (c) birth weight ranging from 6 to 10 lb. Ten infants
reported to have some level (M¼ 5.80 h/month, SD¼ 7.07) of foreign language exposure (music and library story time).
Average music exposure (e.g., parents singing and radio) was 20.57 h/week (SD¼ 13.44) at 7months and 26.35 h/week
(SD¼ 24.51) at 11months. Two of the 26 infants who were tested at 7months (age: M¼ 27.27weeks, SD¼ 0.94; 14 males)
became too fussy before data recording. Twenty infants returned for testing at 11months (age: M¼ 48.56 weeks,
SD¼ 1.22; 10 male). Of these, two become very fussy before the EEG session. Only infants with more than 1500 trials
accepted at both sessions were included in the final analyses (N¼ 16).

During each session (7 vs 11months), infants were exposed to 3000 repetitions of one synthesized high-front
vowel bearing a low-dipping F0 contour like the one shown in Fig. 1(a) (105Hz–89Hz–110Hz), which has been demon-
strated to elicit better signal quality than flat or falling F0 (first formant¼ 330Hz; second formant¼ 2500Hz; F0 dipping
from 101 to 87 and 107Hz) (Llanos et al., 2017; Reetzke et al., 2018). EEGs were collected with three electrodes placed on
the vertex (Cz, active), right earlobe (reference), and forehead (ground). EEG signals were digitized and amplified in a
NeuroScan system at 20 kHz. The audio was presented monaurally via one insert earphone to the right ear at 75 dB sound
pressure level (SPL). The inter-stimulus interval was jittered around 3006 20ms, and the polarity of the stimulus wave-
form was alternated across trials to attenuate the cochlear microphonics effect. The whole experimental session lasted
approximately 45min, with approximately 15min of recording. Breaks were taken when infants became fussy or when
electrodes needed to be adjusted. For every infant, we were able to collect a minimum of 1500 artifact-free trials with an
amplitude smaller than 640 lV relative to the mean amplitude of the 50ms portion of the EEG preceding the onset of
the auditory stimulus.

2.2 FFR biometrics

2.2.1 HMM procedures

The HMM was defined as a chain of three hidden states feedforward connected in steps of one and two (Llanos et al.,
2017, 2019; Reetzke et al., 2018). We trained a total of 128 HMMs (16 infants� 2 sessions� 4 averaging sizes). FFR aver-
aging size ranged from the optimal value reported in Llanos et al. (2019) (N¼ 200 trials) to three small values (N¼ 1, 5,
and 50 trials) selected from Llanos et al. (2019) to explore the performance of the HMM at low signal-to-noise ratio
(SNR) levels. Each HMM was trained to recognize the FFRs of one infant in one session. Training and testing parameters
were adopted from Llanos et al. (2019) (codebook size¼ 150 Voronoi cells, training size¼ 750 trials, cross-validation
method¼ k-fold). To manipulate the SNR of FFR, training and testing sets were sub-averaged with a moving average win-
dow that combined trials evoked with different stimulus polarities. Each sub-averaged FFR was divided into a sequence of
fast Fourier transform (FFT) spectrum slices (slice length¼ 20ms, overlap¼ 15ms). Each FFT sequence was converted
into a sequence of discrete symbols, or emissions, using the vector quantization procedures described in Llanos et al.
(2019). During the training phase, the HMM was trained to generalize a stochastic representation of the emission sequen-
ces included in the training set. During the testing phase, we used the log-probability metric (Llanos et al., 2019) to quan-
tify the degree of similarity between each emission sequence in the testing set and the stochastic representation generalized
by the model during the training phase. Log-probabilities were averaged into one single recognition score per model to
reduce error type II in further statistical analysis.

2.2.2 model reliability

To assess the reliability of the model, we examined the extent to which infant recognition scores were above the empirical
level of chance. The empirical level of chance for each HMM was determined via permutation test (Anderson and Braak,
2003; Xie et al., 2019). We shuffled FFR trials across infants and followed the training and testing procedures introduced
in Sec. 2.2.1 to derive one chance-level recognition score for each HMM. We repeated these steps multiple times to create
a distribution of 100 chance-level recognition scores for each HMM. Next, we averaged the chance-level recognition scores
by session and averaging size and calculated the proportion of them that were equal to or higher than the average of the
corresponding ground truth scores obtained as in Sec. 2.2.1. We used this proportion as a p-value to reject the null
hypothesis that the HMM was performing at chance in the corresponding session and averaging size.

2.2.3 Effects of session on infant recognition scores

Infant recognition scores were modeled with the following linear mixed-effects equation in R (lme4 package): score � ses-
sion þ averaging_size þ session:averaging_size þ (1jinfant). The equation incorporated fixed effects and interactions by
session (reference level¼ 7months) and averaging size and random intercepts by infant. The reference level for averaging
size was set to the size providing higher recognition scores [N¼ 50 trials; see Fig. 2(a)]. To assess the effects of session by
averaging size on non-reference levels, we conducted post hoc Tukey-adjusted pairwise comparisons in R (emmeans
package).
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2.2.4 Discrimination performance

To diagnose the discrimination performance of the HMM, we examined the receiver operating characteristic (ROC) curve
of the model for each averaging size in each session. The ROC curve is a standard metric of classification performance in
machine learning and data mining work, including machine learning studies with a focus on clinical diagnosis (Linden,
2006). The ROC curve represents the trade-off between the true and false positive rate of a classifier across multiple dis-
crimination thresholds and thus provides a big picture of its discrimination performance. The discrimination performance
of a recognition model can be ranked into one of five categories as a function of the area under the ROC curve: excellent
(area> 0.9), good (>0.8), fair (>0.7), poor (>0.6), or bad (>0.5) (Carter et al., 2016). To calculate the ROC of the model
for each averaging size in each session, we used the HMMs trained in Sec. 2.2.1 to discriminate between emission sequen-
ces from different infants. Following this approach, each emission sequence in each testing set was classified into the infant
category of the HMM providing the largest log-probability (i.e., greatest recognition score). ROC curves were averaged by
session and averaging size and ranked into one of the five categories introduced above as a function of their area. We also
calculated the percentage of emission sequences that were classified into the right infant category (i.e., discrimination accu-
racy) for each averaging size in each session.

2.2.5 Optimal recognition by frequency band

We examined the frequency bands of the FFR that provided better recognition scores. To optimize the performance of the
model, FFR frequency bands were averaged across the number of trials providing the highest infant recognition scores
(N¼ 50 trials). We applied the training and testing procedures introduced in Sec. 2.2.1 to different frequency channels
extracted from the FFT. For each frequency channel, we selected the FFT values (converted to dB) between the upper and
lower frequency bounds of the channel. The frequency bands of the channels ranged from 80 to 980Hz in steps of 100Hz
(Llanos et al., 2019). Infant recognition scores across frequency bands were modeled with the following linear mixed-

Fig. 2. FFR biometric results. (a) Individual infant recognition scores organized by averaging size and session. Boxplot horizontal lines repre-
sent median and percentiles. The darker dots below the boxplots represent the chance-level recognition scores derived from the permutation
analysis. Asterisks denote relative differences in statistical significance. (b) ROC curves organized by session and averaging size. (c)
Recognition scores organized by session and frequency band (averaging size¼ 50 trials). In the x axes, the frequency band is denoted by the
onset frequency of the band (e.g., 80 means 80–180Hz). Asterisks denote relative differences in statistical significance. The p-values are pro-
vided in the text. Outlier dots (>90%) are not shown in the boxplot, but they were included in the statistical analyses.
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effects equation in R: score � session þ band þ session:band þ (1jinfant). The equation incorporated fixed effects by ses-
sion (reference level¼ 7months) and frequency band, their interaction, and random intercepts by infant. The reference for
frequency band was set to a level providing better recognition scores [180–280Hz; see Fig. 2(c)]. To assess the effects of
session for each band, we conducted post hoc Tukey-adjusted pairwise comparisons in R (emmeans package).

2.3 Neural F0 encoding metrics

Responses were averaged across the 1500 artifact-free trials for each infant in each session. Neural F0 tracking was com-
puted as the Pearson’s r correlation coefficient between the F0 contours of the averaged response and evoking stimulus
(Reetzke et al., 2018). Neural and stimulus F0 contours were extracted with the autocorrelation method using a sliding
window of 40ms duration and 30ms overlap. Neural F0-strength was determined as the mean autocorrelation peak across
sliding windows in the FFR (Reetzke et al., 2018). To assess the SNR of the FFR for each infant in each session, we com-
puted the root mean square (rms) intensity of the averaged response (0–250ms) over the rms of the pre-stimulus portion
of the EEG (�50 to 0ms).

3 Results

3.1 FFR biometrics

First, we evaluated the reliability of the model across sessions and averaging sizes. The permutation tests showed that the
distributions of recognition scores in each session and averaging size were above the level of chance (p-values< 0.001).
This indicates that the performance of the HMM was robust across averaging sizes and sessions. Chance-level recognition
scores are depicted in Fig. 2(a) (darker dots below each boxplot).

Next, we examined the effects of session and averaging size on infant recognition scores [boxplots in Fig. 2(a)].
The results of the linear mixed-effects model conveyed a significant effect by session (b¼ 8.23, z¼ 2.84, p¼ 0.005). This
indicates that, when the averaging size was fixed to the reference level (50 trials), infant recognition scores at 11months
were better than those at 7months. The results of the post hoc analysis for non-reference levels yielded a significant effect
of session (11> 7months) for averaging sizes equal to or larger than five trials: one trial: t(119)¼�1.53, p¼ 0.12; five tri-
als: t(119)¼�2.22, p¼ 0.02; 50 trials: t(119)¼�2.75, p¼ 0.006; 200 trials: t(119)¼�2.72, p¼ 0.007. On the other hand,
the fixed effects of averaging size were not significant (p-values> 0.36). This indicates that infant recognition scores at
7months (reference session) did not significantly change from the reference size (50 trials). Further post hoc analysis via
Tukey-adjusted pairwise comparisons extended this null result to the 11month session (p-values> 0.43). Finally, the inter-
actions between fixed effects in the mixed-effects model were negative but not significant (11month � 1 trial: b¼�3.65,
z¼�0.89, p¼ 0.3; 11month � 5 trials: b¼�1.57, z¼�0.38, p¼ 0.7; 11month � 200 trials: b¼�0.07, z¼�0.01,
p¼ 0.9). This indicates that while the effect of session on each averaging size was smaller than on the reference size, these
differences were not significant.

Next, we examined the discrimination performance of the model. We found ROC areas in the poor range (one
trial at 7 and 11months and five trials at 7months), good range (50 and 200 trials at 11months), and fair range (the other
ones). We did not find any ROC area in the excellent (ROC> 0.9) or bad (ROC� 0.6) range. The percentages of discrimi-
nation accuracy (Table 1) were consistent with the results of the ROC analysis. All of them were way above the level of
chance (¼ 6.25%). Combined, these results show that the recognition scores conveyed by the model were associated with a
good discrimination performance for averaging sizes larger than or equal to 50 trials in the second session (11months).

Next, we identified the frequency bands that conveyed more robust biometric patterns. The results of the linear
mixed-effects modeling conveyed several significant fixed effects and interactions [Table 2 and Fig. 2(c)]. The fixed effects
indicated that most bands higher than 580Hz provided less robust biometric information than the optimal band
(180–280Hz) at 7months. The interactions showed that the effects of session on the stimulus F0 band (80–180Hz) and
bands above 480Hz were smaller than in the optimal band. Consistent with this finding, the results of the post hoc analy-
sis of band-by-session showed that at 11months, the optimal band conveyed more biometric information than these other
bands: band onset¼ 80Hz: t(290)¼ 3.24, p¼ 0.035; 580Hz: t(290)¼ 4.24, p¼ 0.001; 680Hz: t(290)¼ 5.95, p< 0.0001;
780Hz: t(290)¼ 7.06, p< 0.0001; 880Hz: t(290)¼ 8.18, p< 0.0001. Combined, these results show that the bands providing

Table 1. ROC area and discrimination accuracy by session and averaging size.

Averaging size 1 trial 5 trials 50 trials 200 trials

7 months
ROC area 0.64 (poor) 0.70 (poor) 0.76 (fair) 0.76 (fair)
Discrimination accuracy (% correct) 14.25 19.30 25.51 27.07

11 months
ROC area 0.70 (poor) 0.75 (fair) 0.82 (good) 0.81 (good)
Discrimination accuracy (% correct) 22.35 31.90 42.57 36.97
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more robust biometric information were between 180 and 480Hz. The results of the post hoc analysis of session-by-band
revealed significant differences between sessions for all bands below 580Hz (band onset¼ 80Hz: t(290)¼�2.06, p¼ 0.039;
180Hz: t(290)¼�5.36, p< 0.0001; 280Hz: t(290)¼�4.77, p< 0.0001; 380Hz: t(290)¼�4.85, p< 0.0001; 480Hz:
t(290)¼�3.07, p< 0.0001) (bands> 480Hz: p-values> 0.1). These results show that all bands below 580Hz were able to
capture developmental changes.

3.2 Neural F0 encoding

We conducted two two-sample t-tests to assess the effects of session (independent variable) on neural F0 tracking and
neural F0-strength (dependent variables), and none of the tests provided significant differences between sessions [neural
F0 tracking: t(15)¼ 1.03, p¼ 0.31; F0-strength: t(15)¼�0.03, p¼ 0.97] (Fig. 3). The lack of differences between sessions
could be due to the low SNR levels of individual FFRs averaged across 1500 trials (7month session: M¼ 1.18, SD¼ 0.19;
11month session: M¼ 1.14; SD¼ 0.2). The SNR levels observed in the present study were much smaller than the SNR lev-
els that are typically documented for adults in FFR research using even smaller numbers of trials. In this body of literature,
SNR levels are usually equal to or higher than 2 for averaging sizes as small as 1000 trials (Llanos et al., 2017; Xie et al.,
2017; Reetzke et al., 2018).

Table 2. Significant effects in the linear mixed-effects modeling of infant recognition scores by band and session. �, p � 0.05; ��, p � 0.01;
���, p � 0.001. df, degrees of freedom.

b-coefficient df z-score pval

(Intercept) �225.93 116.10 �287.76 <2e�16���

11 months 5.16 272 5.53 7.19e�08���

680–780Hz �2.15 272 �2.31 0.021�

780–880Hz �2.46 272 �2.64 0.008��

11 months: 80–180Hz �3.17 272 �2.40 0.01�

11 months: 580–680Hz �4.18 272 �3.17 0.001��

11 months: 680–780Hz �3.57 272 �2.71 0.007��

11 months: 780–880Hz �4.33 272 �3.28 0.001��

11 months: 880–980Hz �6.37 272 �4.83 2.25e�06���

Fig. 3. Neural F0 encoding results. FFR waveforms grand-averaged across infants (N¼ 16) by session (left panels). Individual neural F0-
strength values (top right panel) and stimulus-response correlation values (bottom right panel) are organized by session. Boxplot horizontal
lines represent median and percentiles.
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4. Discussion

We aimed to investigate the development of idiosyncratic FFR patterns during the first year of life. To this end, we trained
a pattern recognition model to recognize infants by their FFRs. FFRs were longitudinally collected at 7 and 11months of
age, a period of time during which infants undergo rapid development in many domains that are also interacting with
experience (Bosseler et al., 2013; Maurer and Werker, 2014; Diamond, 2006; Werker and Tees, 1984). We used the infant
recognition scores provided by the model to index the amount of biometric information encoded in the FFR of each infant
in each session.

First, we assessed the performance of the model across FFR averaging sizes and sessions. The model recognized
infants by their FFRs with scores way above the level of chance for averaging sizes as small as one single FFR trial. As in
prior adult work (Llanos et al., 2017), we did not find significant differences in recognition scores between large averaging
sizes (e.g., 50 vs 200 trials). However, our results also did not convey differences between small and large averaging sizes
(e.g., 1 vs 50 trials). This unexpected finding suggests that the effects of averaging size on infant recognition scores may
emerge later in time.

Discrimination performance was associated with fair (ROC> 0.7) and good (ROC> 0.8) discrimination curves
for averaging sizes equal to or above 50 trials. This finding is also consistent with prior adult work (Llanos et al., 2019).
However, the discrimination curves reported in this prior work (ROC> 0.9) were better than in the present study. This
discrepancy could be due to differences in neural gain between infants and adults. As we noted in Sec. 3.2, the SNR of the
FFR for infants was nearly half of the SNR documented for adults in prior FFR work (Llanos et al., 2017). The fact that
we were able to recognize infants despite the low SNR indicates that infant biometric patterns were robustly encoded in
the neural response.

To assess developmental changes in the amount of biometric information conveyed in the FFR, we examined the
effects of session (7 vs 11months) on infant recognition scores. We hypothesized that the rapid maturation of the auditory
system combined with longer periods of meaningful auditory experience would lead to easier-to-recognize individual pro-
files. This hypothesis was supported by the results. Specifically, we found a robust developmental effect for averaging sizes
of five trials and above. This finding demonstrates that pattern recognition approaches are suitable to investigate the emer-
gence and maturation of FFR features across the lifespan. Notably, the oscillation bands in the FFR conveying more robust
biometric information were outside the F0 range of the stimulus signal. This finding provides a potential dissociation
between the neural encoding of biometric and F0 features in the FFR. This finding is also consistent with prior work
(Easwar et al., 2021) showing that infant-adult differences in the FFR are also modulated by frequency band.

Prior FFR work with children has shown that, during the first 10 years of life, the neural encoding of F0 becomes
gradually more consistent across trials within the same session (Skoe et al., 2015). While our model was trained to recog-
nize biometric and not F0 features, the higher recognition scores conveyed by the model in the second session indicate
that FFR biometric features were more consistently represented across trials at 11months. Thus, the recognition
performance of our model at the older age could have been facilitated by a more consistent encoding of FFR features over
time.

In sum, the results of the present study advance our current scientific understanding of the development of indi-
vidual neural differences during the second half of the first year of life. Critically, our method provides a new angle to
investigate these differences in early development when it is difficult to record thousands of trials with high SNR from
infants. From a methodological perspective, our method was able to capture robust developmental effects that were not
captured by our traditional metrics of neural F0 encoding (F0-strength, stimulus-response correlation), which were less
robust against low SNR values. Because the HMM can learn a wide variety of spectro-temporal patterns in an unsuper-
vised manner, future research could leverage this approach to identify FFR-based markers of neurodevelopmental disorders
or individual differences in auditory processing across the lifespan.
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